Pages

Subscribe:

Tuesday 20 September 2011

Astronomi observasional

Seperti diketahui, astronomi memerlukan informasi tentang benda-benda langit, dan sumber informasi yang paling utama sejauh ini adalah radiasi elektromagnetik, atau lebih spesifiknya, cahaya tampak. Astronomi observasional bisa dibagi lagi menurut daerah-daerah spektrum elektromagnetik yang diamati: sebagian dari spektrum tersebut bisa diteliti melalui permukaan Bumi, sementara bagian lain hanya bisa dijangkau dari ketinggian tertentu atau bahkan hanya dari ruang angkasa. Keterangan lebih lengkap tentang pembagian-pembagian ini bisa dilihat di bawah:

Astronomi radio
 Astronomi observasional jenis ini mengamati radiasi dengan panjang gelombang yang lebih dari satu milimeter (perkiraan). Berbeda dengan jenis-jenis lainnya, astronomi observasional tipe radio mengamati gelombang-gelombang yang bisa diperlakukan selayaknya gelombang, bukan foton-foton yang diskrit. Dengan demikian pengukuran fase dan amplitudonya relatif lebih gampang apabila dibandingkan dengan gelombang yang lebih pendek.
Gelombang radio bisa dihasilkan oleh benda-benda astronomis melalui pancaran termal, namun sebagian besar pancaran radio yang diamati dari Bumi adalah berupa radiasi sinkrotron, yang diproduksi ketika elektron-elektron berkisar di sekeliling medan magnet.Sejumlah garis spektrum yang dihasilkan dari gas antarbintang (misalnya garis spektrum hidrogen pada 21 cm) juga dapat diamati pada panjang gelombang radio.
Beberapa contoh benda-benda yang bisa diamati oleh astronomi radio: supernova, gas antarbintang, pulsar, dan inti galaksi aktif (AGN - active galactive nucleus).



Astronomi inframerah
Astronomi inframerah melibatkan pendeteksian beserta analisis atas radiasi inframerah (radiasi di mana panjang gelombangnya melebihi cahaya merah). Sebagian besar radiasi jenis ini diserap oleh atmosfer Bumi, kecuali yang panjang gelombangnya tidak berbeda terlampau jauh dengan cahaya merah yang tampak. Oleh sebab itu, observatorium yang hendak mengamati radiasi inframerah harus dibangun di tempat-tempat yang tinggi dan tidak lembab, atau malah di ruang angkasa.
Spektrum ini bermanfaat untuk mengamati benda-benda yang terlalu dingin untuk memancarkan cahaya tampak, misalnya planet-planet atau cakram-cakram pengitar bintang. Apabila radiasinya memiliki gelombang yang cenderung lebih panjang, ia dapat pula membantu para astronom mengamati bintang-bintang muda pada awan-awan molekul dan inti-inti galaksi — sebab radiasi seperti itu mampu menembus debu-debu yang menutupi dan mengaburkan pengamatan astronomis.Astronomi inframerah juga bisa dimanfaatkan untuk mempelajari struktur kimia benda-benda angkasa, karena beberapa molekul memiliki pancaran yang kuat pada panjang gelombang ini. Salah satu kegunaannya yaitu mendeteksi keberadaan air pada komet-komet

Astronomi optikal 

Teleskop Subaru (kiri) dan Observatorium Keck (tengah) di Mauna Kea, keduanya contoh observatorium yang bisa mengamati baik cahaya tampak atau cahaya hampir-inframerah. Di kanan adalah Fasilitas Teleskop Inframerah NASA, yang hanya beroperasi pada panjang gelombang hampir-inframerah.
Dikenal juga sebagai astronomi cahaya tampak, astronomi optikal mengamati radiasi elektromagnetik yang tampak oleh mata telanjang manusia. Oleh sebab itu, ini merupakan cabang yang paling tua, karena tidak memerlukan peralatan. Mulai dari penghujung abad ke-19 sampai kira-kira seabad setelahnya, citra-citra astronomi optikal memakai teknik fotografis, namun sebelum itu mereka harus digambar menggunakan tangan. Dewasa ini detektor-detektor digitallah yang dipergunakan, terutama yang memakai CCD (charge-coupled devices, peranti tergandeng-muatan).
Cahaya tampak sebagaimana diketahui memiliki panjang dari 4.000 Å sampai 7.000 Å (400-700 nm). Namun demikian, alat-alat pengamatan yang dipakai untuk mengamati panjang gelombang demikian dipakai pula untuk mengamati gelombang hampir-ultraungu dan hampir-inframerah


Astronomi ultraungu
Ultraungu yaitu radiasi elektromagnetik dengan panjang gelombang lebih kurang 100 sampai 3.200 Å (10-320 nm). Cahaya dengan panjang seperti ini diserap oleh atmosfer Bumi, sehingga untuk mengamatinya harus dilakukan dari lapisan atmosfer bagian atas, atau dari luar atmosfer (ruang angkasa). Astronomi jenis ini cocok untuk mempelajari radiasi termal dan garis-garis spektrum pancaran dari bintang-bintang biru yang bersuhu sangat tinggi (klasifikasi OB), sebab bintang-bintang seperti itu sangat cemerlang radiasi ultraungunya — penelitian seperti ini sering dilakukan dan mencakup bintang-bintang yang berada di galaksi-galaksi lain. Selain bintang-bintang OB, benda-benda langit yang kerap diamati melalui astronomi cabang ini antara lain nebula-nebula planet, sisa-sisa supernova, atau inti-inti galaksi aktif. Diperlukan penyetelan yang berbeda untuk keperluan seperti demikian sebab cahayanya mudah tertelan oleh debu-debu antarbintang. 

Astronomi sinar-X
Benda-benda bisa memancarkan cahaya berpanjang gelombang sinar-X melalui pancaran sinkrotron (berasal dari elektron-elektron yang berkisar di sekeliling medan magnet) atau melalui pancaran termal gas pekat dan gas encer pada 107 K. Sinar-X juga diserap oleh atmosfer, sehingga pengamatan harus dilakukan dari atas balon, roket, atau satelit penelitian. Sumber-sumber sinar-X antara lain bintang ganda sinar-X (X-ray binary), pulsar, sisa-sisa supernova, galaksi elips, gugusan galaksi, serta inti galaksi aktif.

Astronomi sinar-gamma Astronomi sinar-gamma mempelajari benda-benda astronomi pada panjang gelombang paling pendek (sinar-gamma). Sinar-gamma bisa diamati secara langsung melalui satelit-satelit seperti Observatorium Sinar-Gamma Compton (CGRO), atau dengan jenis teleskop khusus yang disebut teleskop Cherenkov (IACT). Teleskop jenis itu sebetulnya tidak mendeteksi sinar-gamma, tapi mampu mendeteksi percikan cahaya tampak yang dihasilkan dari proses penyerapan sinar-gamma oleh atmosfer.
Kebanyakan sumber sinar-gamma hanyalah berupa ledakan sinar-gamma, yang hanya menghasilkan sinar tersebut dalam hitungan milisekon sampai beberapa puluh detik saja. Sumber yang permanen dan tidak sementara hanya sekitar 10% dari total jumlah sumber, misalnya sinar-gamma dari pulsar, bintang neutron, atau inti galaksi aktif dan kandidat-kandidat lubang hitam.

Cabang-cabang yang tidak berdasarkan panjang gelombang

Sejumlah fenomena jarak jauh lain yang berbentuk selain radiasi elektromagnetik dapat diamati dari Bumi. Ada cabang bernama astronomi neutrino, di mana para astronom menggunakan fasilitas-fasilitas bawah tanah (misalnya SAGE, GALLEX, atau Kamioka II/III) untuk mendeteksi neutrino, sebentuk partikel dasar yang jamaknya berasal dari Matahari atau ledakan-ledakan supernova.Ketika sinar-sinar kosmik memasuki atmosfer Bumi, partikel-partikel berenergi tinggi yang menyusunnya akan meluruh atau terserap, dan partikel-partikel hasil peluruhan ini bisa dideteksi di observatorium. Di masa yang akan datang, diharapkan akan ada detektor neutrino yang peka terhadap partikel-partikel yang lahir dari benturan sinar-sinar kosmik dan atmosfer.
Terdapat pula cabang baru yang menggunakan detektor-detektor gelombang gravitasional untuk mengumpulkan data tentang benda-benda rapat: astronomi gelombang gravitasional. Observatorium-observatorium untuk bidang ini sudah mulai dibangun, contohnya observatorium LIGO di Louisiana, AS. Tetapi astronomi seperti ini sulit, sebab gelombang gravitasional amat sukar untuk dideteksi.
Ahli-ahli astronomi planet juga banyak yang mengamati fenomena-fenomena angkasa secara langsung, yaitu melalui wahana-wahana antariksa serta misi-misi pengumpulan sampel. Beberapa hanya bekerja dengan sensor jarak jauh untuk mengumpulkan data, tapi beberapa lainnya melibatkan pendaratan —dengan kendaraan antariksa yang mampu bereksperimen di atas permukaan. Metode-metode lain misalnya detektor material terbenam atau melakukan eksperimen langsung terhadap sampel yang dibawa ke Bumi sebelumnya

No comments:

Post a Comment